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ABSTRACT

High-time resolution x-ray equipment flown from Ft.
Churchill, Manitoba, Canada on August 11, 1965 provides evi-
dence for species of auroral zone x-ray microbursts with an
asymmetric time profile. These asymmetric microbursts are

characterized by a rise of the form 1 - e_t/TR where R is about

30 milliseconds, and a decay of the form of e_t/TD where ™ is

about 200 milliseconds, and a typical peak flux for the larg-
est events of J (E > 60 keV) ~ 10° photons em™® sec™tat
0 ‘Tx-ray
lOg/cmz. An episode of these asymmetric bursts was observed in the
early morning hours (after 4:30 local time) and an episode of
the more common symmetric microbursts began after 9:30 local
time. The fast rise times, and the lack of dispersion 2 10
milliseconds in the x-ray bursts observed at different energies

implies restrictions on the nature, and propagation of the

parent electron microbursts.



INTRODUCTION

Numerous rocket and balloon studies in the auroral zone
have investigated the bremsstrahlung x-radiation produced by
electrons impinging upon the upper atmosphere. With the avail-
ability of data from charged particle detectors on polar satel-
lites, measuring precipitated electrons, it is now possible to
investigate the behavior of both the parent electrons and the
daughter bremsstrahlung x-rays.

This study reports on a portion of the data obtained during
a series of seven balloon flights made from Fort Churchill, Canada,
of balloon-borne scintillator-photomultiplier x-ray detectors.

The geographic coordinates of the balloon launch site are 58.75°N
and 94.09°W (L = 8.66). The data of interest herein, were obtained
during a balloon flight which commenced at 0225 UT on August 11,
1965, during a period of relatively low geomagnetic activity.

The International Planetary Index for geomagnetic activity, Kp’

was lO or less during the entire flight period.

The balloon reached a ceiling altitude of 110,000 feet at
2315 local time (0515 UT) and thereafter drifted in a west-south-
westerly direction. It remained above 106,000 feet during the

period of 15 hours, during which useful data were acquired at the




telemetry receiving station. Table 1 gives the positions of the
balloon during the period of interest, namely 0700-1700 UT
(0100-1100 IT) and the L coordinate corresponding to the positions.
Also given, for comparison, are the L values for places from which

other x-ray experiments have been flown before.



INSTRUMENTATION

The detection system, illustrated in Figure 1, consisted
of a 5 inch diameter, half inch thick NaI(T1l) scintillation
crystal, viewed by a Dumont 6364 photomultiplier of the same
diameter. The geometric factor of the detector for x-rays
isotropic over the whole of the upper hemisphere, was 476 cm ster.
A Jucite light pipe, of the same dimensions as the crystal,
separated the crystal and the phototube by 2 cm, in order to
minimize the effects of photocathode non-uniformities upon
the energy resolution of the system.

The photomultiplier EHT was supplied from a regulated
DC converter, which in turn obtained its power from a series
of mercury batteries. The whole high voltage system was
vacuum potted to eliminate the possibility of corona. A
L-metal shield enclosed the photomultiplier dynode chain and
the photocathode, and this minimized the perturbation of the
electron orbits and hence the photomultiplier gain, by the
earth's magnetic field. The complete detector system was
observed to yield a resolution of 50% FWHM for the 32 keV
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After linear pulse amplification, the photomultiplier
pulses were applied to a three window pulse height analyzer,
with contiguous windows set to 20-40O keV, L40-60 keV, and
> 60 keV. The energy calibration of each window was adjusted,
prior to flight, using known monochromatic x-ray sources, and
a 400 channel pulse height analyzer operating in the coincidence
mode. Each of the outputs from the three window pulse height
analyzer was fed to identical logarithmic count-rate meters,
and also to a three position subcommutator which sampled each
of the three pulse rates for a minute at a time. The output
from the subcommutator was fed to a binary scaler with outputs
at scaling factors of 64 and 1024. The counting rate meter
outputs, and the two scaler outputs were fed to separate M
subcarrier oscillators, which were used to modulate the tele-
metry transmitter, delivering a power of 0.25 watts into
a vertically polarized coaxial sleeve antenna at 72 mc/sec.

The response time of the counting rate meter circuits
was determined to be 3 milliseconds for an instantaneous increase
in pulse input rate. BEach count rate meter was individually

calibrated prior to flight, and the two binary scaler outputs



were used to provide an inflight check of the calibrations. An
inflight calibration of the subcarrier oscillator stability was

also provided by sampling a stabilized square wave input periodi-

cally throughout the flight.




OBSERVATIONS

The first six hours of x-ray data obtained after the
balloon attained ceiling altitude were rather featureless.
Beginning at 1028 UT (0428 LT) and over a period of 6-1/2
hours, however, the data revealed a great variety and number
of fast time variations of auroral zone x-ray activity. The
magnetometer records at Fort Churchill showed no appreciable
magnetic activity during this period, nor did the riometer
register any event. Since these x-ray events occurred during
daylight hours, no visual confirmation of the presence of
aurorae was possible.

Figures 2 and 3 presents a number of typlcal fast rise-time
x-ray bursts. They appear in large numbers both as isolated
events emerging from the background and in trains occurring in
close succession with an apparent periodicity of approximately
0.6 second. When two follow each other very closely, the result
is a compound structure in which the two leading edges can usu-
ally be discerned. Furthermore, there are also periods of com-
plex activity during which the absolute x-ray flux is so high

that any attempt at isolation of such bursts is futile, although




one does see indications of the superposition of individual
bursts. The overall features of these bursts are, in general,
similar to those that have been reported and discussed pre-
viously by Anderson and Milton [1964] and Anderson [1965], who
have named them microbursts, Parks [1967], and several other
authors. 1In view of the fact that the bursts observed during
the flight reported herein are also devoid of substructure and
are of the same time scale, we adopt the same terminology of
microbursts, since there is enough general evidence to show
that the bursts herein described belong to thé same general
category of those observed by Anderson and Milton [1964].

The microbursts activity appears in two time intervals,
separated by 1-3/H hours of little activity, the two periods
containing bursts having significantly different characteris-
tics. During the earlier epoch of activity, 1027-1355 UT (oLk27-
(0755 LT), the bursts have hard spectra, very fast rise times and
slower decay times and, as such, are somewhat different from
the more symmetric microbursts discussed by earlier authors.

Thr original recognition of these asymmetric bursts represents
the first time that such asymmetric microbursts have been

reported (Edwards et al. [1966]). Later, during the period
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1540-1707 UT (0940-1107 LT), the character of the observed micro-
bursts is essentially symmetric, the events exhibiting character-
istics similar to the microbursts reported by Anderson and Milton
[1964]. An example of each of the two.types, together with one of
less severe asymmetric features (an intermediate type) observed in
the late morning, is presented in Figure L.

Preceding the initial onset of the period of microburst
activity, a gradual increase in the background counting rate of
the 20-40, 40-60, and > 60 keV energy channels was observed.

Such increases prior to microburst epochs have also been reported
by Anderson and Milton [1964]. It should be pointed out that

the peak intensities of the asymmetric bursts observed by us are
similar to those of the symmetric ones seen by Anderson and

his co-workers. In common with them, more than half the peak
fluxes were less than 20 cm > sec™T above background and only
about one percent of the asymmetric bursts had peak fluxes in
excess of 60 cm-2 sec"l at an atmospheric depth of 10 g/cm2.

Certain gross features of the x-ray events emerge from a
general study of the entire data. The occurrence of asymmetric
microbursts is seldom isolated, but continues over an extended

period of time. There seems to be no evident relationship
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between the onset of the asymmetric microbursts and the nature of
the preceding x-ray activity. In short, the onset of these microbursts
appears to be sudden and impulsive. It is observed that the
asymmetric bursts are more predominant in the E > 60 keV channel
than are the symmetric bursts, indicative of a harder photon spec-
trum. A peak flux above previous background level of
JO(E > 60 keV) ~ 107 photons cm_2 sec_l can be observed in the
E > 60 keV channel during a large asymmetric event. The individual
microbursts maintain their identity (i.e. the rise and decay
times are not changed) despite superposition upon one another,
or upon a smooth background of x-ray activity. The shortness
of the characteristic tiies of the microbursts, especially the
asymmetric variety, would appear to be of importance in the
understanding of the dynamic processes responsible for the parent
precipitation phenomenon. A logical step forward would be to inves-
tigate the parent particle precipitation, using detectors on high
latitude satellites, and this has been done and is discussed in a
companion paper (Oliven, et al. [1967]).

The present study reveals a wide variability in the rise
time characteristics of x-ray microbursts. The asymmetric micro-
bursts observed during early morning hours are characterized by

rise times, TR of about 20-30 milliseconds and by decay times, ™ of
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about 200 milliseconds where the rising and decay phases are
represented by (1 - e_t/TR) and e—t/TD, respectively. Through-
out the period of activity, one feature noticed was that the
time of apparent duration of a burst, namely the period during
which it is visible above background from the rise to the
apparent end of the decay, was almost always between 300 and
500 milliseconds. This feature is in agreement with a similar
characteristic of the symmetric bursts observed by Anderson and
Milton [1964] whose flights were from Flin Flon at L = 6.1.

One hundred of the large asymmetric bursts were studied
in detail, the frequency distribution of rise times for these
events being given in Figure 5. About 60% of the cases have
rise times < 50 milligeconds. A composite of 75 of these micro-
bursts is shown in Figure 6, and a decay time constant of 200
milliseconds is apparent. Figure 7, an example of an individual
burst, shows a rise time of 30 milliseconds and a decay time
of 200 milliseconds. The E > 60 keV energy window is displayed
in all these diagrams.

Figure 8 gives samples of all three energy channels during the

late morning hours when symmetric bursts were seen. Anderson, et al.
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[1966] have also made flights recently at L ~ 8.0, but they have
observed predominantely the symmetric type of bursts during their
flights. Although one does see the asymmetric bursts occasion-~
ally in the lower energy channels, it is possible to generalize
that, in most of the examples of asymmetric microbursts observed
during our flight, the highest energy channel contained the
highest counting rate of all the channels (see Figure 3). The
symmetric bursts, on the other hand, were observed to exhibit
comparable responses in all three channels.

To study the photon energy spectrum of the asymmetric
microburst, we have computed the ratios of counting rates, above

background of:

X~-rays, energy > 40 keV X-rays, energy > 20 keV
x-rays, energy > 60 keV’ x-rays, energy > 60 keV’

and

X-rays, energy > 20 keV
x-rays, energy > 40 keV

at 10 millisecond intervals, throughout the entire duration of indi-
vidual bursts. Figure 9 shows the largest observed burst, with the

analog output at the top, and the ratios at the bottom. The
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ratios have the lowest values within 10 milliseconds of the
occurrence of peak counting rates in all three channels, and

this indicates relatively small dispersions (< 10 milliseconds) in
the arrival of the parent precipitating particles of different
energies at the production layer.

Although cur emphasis in this paper has been on the
newly observed fast rising asymmetric microbursts, nevertheless,
it is worthwhile to make some comparison with the better known
types of symmetric bursts, cbserved by us during the latter
half of the flight. A frequency distribution of the rise
times for both types of events is presented in Figure 10, and
it can be seen that there is nc prominent peaking in the lower
histogram; that is, the rise times of the symmetric micro-
bursts display a wide variability. Specifically, only 229, of
the symmetric events have rise times < 50 milliseconds in con-
trast to 71% in the case of asymmetric events.

Figures 11 and 12 display composite asymmetric and
symmetric microbursts for the energy ranges 40-60 keV, and > 60
keV, and it can be seen that the symmetric microburst clearly
possesses the softer spectrum of the two species of events. The

e-folding energies for both types of events are significantly
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higher than those obtained in the vicinity of L ~ 5 to 6 by other
investigators. The composite asymmetric burst spectrum has an
e-folding energy, EO ~ 360 keV at peak intensity. The spectrum
slowly softens with EO falling to ~ 200 keV near the end of the
events. The spectrum of the symmetric bursts hardens during the
riseto peak intensity, at which time EO ~ 160 keV and this softens
with EO eventually falling below 60 keV. In both cases the event
spectra are substantially harder than that of the background
radiagtion. It must be remembered here that with such large values
for EO and in consideration of the restrictions which a limited
two or three point determination of EO impose, the true significance
of these e-folding energies is lost. The values stated are just
presented to give a numerical answer and do not necessarily imply

a spectrum of this form, characterized by these values of EO.
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SUMMARY AND CONCLUSIONS

The primary object of the study has been the investigation
of auroral zone x-ray microbursts, witﬁ high-time resolution
balloon-borne equipment at high latitudes (magnetic shell para-
meter L ~ 8). These balloon results are presented herein,
and those correlating the x-ray microbursts with satellite obser-
vations are presented in the following companion paper (Oliven,
et al. [1967]). A third paper (0Oliven and Gurnett [1967]),
establishing a connection between microbursts and VLF phenomens
also follows.

A new type of microburst has been observed and reported
herein with the characteristics of a hard energy spectrum, fast
rise time, of order 30 milliseconds, and a decay of time con-
stant ~ 200 milliseconds. Symmetric microbursts, similar in
time structure to those reported by others were also observed
during the latter half of the flight. The latter occurred at
a slightly lower L value and at a later time, (local time 9:30

in contrast with 4:30), than the asymmetric microbursts.
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The asymmetric microbursts have a harder spectrum than
the symmetric events, as is evidenced by the large response in
the high energy channel (E > 60 keV) as compared to that in the
lower channels. In contrast, the symmétric bursts are charac-
terized by comparable responses in the lower energy channels
(20-40 and 40-60 keV). A typical peak flux for the asymmetric
events in the > 60 keV channel is given by JO(EX_ray > 60 keV)
~ 20 photons em™? sec™t.

The extremely hard photon spectra found for the larger
events, (e-folding energies of the order of hundreds of keV)
place rather stringent instructions on the interpretation of
the events. If the precipitating particles responsible for
these symmetric and asymmetric bursts are assumed to be elec-
trons then the x-ray spectra must be scrutinized in terms of
the differential energy spectra of the parent electrons, within
the restrictions imposed by the range of the three channels and
the two or three point determination of the x-ray spectra. It
appears necessary to postulate relativistic electrons with an
insignificant flux at lower energies. Differential electron
spectra with a high energy peak > 40O keV have been deduced by

Mozer and Bruston [1966] and rapid fluctuations in the integral
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flux above 400 keV have been seen by Blake, et al. [1966], and
the impulsive bursts reported herein may be an extension of
these relativistic electron populations.

The spectra of the harder asymmetric bursts is not as
easily interpreted in terms of electron bremsstrahlung radiation.
One of the possible explanations could be that of the proton-
excited gamma radiation. If the events were due to proton-excited
gamma, radiation (Hoffmann and Winckler, [1961]) then no special
assumptions about the proton energy spectrum are necessary. As

p

an example, a flux of ~ 107 protons cm_g sec_l above 0.5 MeV

(the Injun 3 geiger counter threshold) having a differential
power law spectral index of -5 could account for the larger asym-
metric bursts. These protons might augment the precipitating elec-
tron population. At the present time, we have no direct evidence
for the contribution protons may make in the production of these
asymmetric x-ray microbursts.

To summarize, the detailed study of the newly observed
asymmetric x-ray microbursts, in addition to the better known
symmetric microbursts, has provided a supplement to the knowledge
of fast temporal variations in auroral zone x-rays. The fast

rise times and hard spectra impose rather stringent conditions on

the mechanisms involved in this impulsive particle precipitation,
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and in turn upon the causative plasma instabilities within the
magnetosphere. In particular, we note that the asymmetric micro-
burst indicates dipersion times of « 10 milliseconds for the
particles responsible for the microburét, implying either a

limit on the distance from the source particle to the earth, or
that there is a significant particle-particle or particle-field
interaction, so that the particles remain bunched while propagat-

ing through the geomagnetic field.
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TABLE 1
Location Latitude Longitude L Value
Balloon at:
700 UT 58.50 266.20 8.457
800 UT 58.50 265.90 8.5426
900 UT 58.50 265.30 8.362
1000 UT 58.30 265.10 8.192
1100 UT 58.30 264.50 8.128
1200 UT 58.30 263.90 8.064
1300 UT : 58.40 263.40 8.081
1400 UT 58.40 262.90 8.025
1500 UT 58. 40 262.30 7.957
1600 UT 58.40 261.80 7.969
1700 UT 58.50 261.20 7.897
Kotzebue, Alaska (1) 66.90 197.50 5.208
Kiruna, Sweden (1) 67.80 20.40 5.417
College, Alaska (1) 66.90 197.50 5.208
Flin Flon, Manitoba (2) 56.00 258.00 6.120
Ft. Yukon, Alaska (1) 66.60 214.70 6.468
Pt. Barrow, Alaska (1) 71.50 - 203.70 8.263
Ft. Churchill, Manitoba (2) 58.80 265.90 8.660

(1)

Indicates low time resolution equipment flown from these points

(2)

Indicates fast time resolution equipment flown from these points.
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FIGURE CAPTIONS

Figure 1 Block diagram of the entire system associated with the

X-ray detector.

Figure 2 Typical appearance of fast-rise time x-ray microbursts.
In the top data-segment compound events are seen, whereas
in the bottom two examples combs or trains and single
bursts can be identified. Vertical scales of bursts

are analog.

Figure 3 Two examples of asymmetric microbursts as they appear,
singly, in all three energy channels. All vertical

scales of bursts are analog.

Figure b4 Comparison of the asymmetric microbursts seen in the
early morning hours, a more symmetric type of burst
seen later in the morning and the symmetric type of
microburst seen late in the morning and similar to
the type commonly observed by other experimenters
(e.g., Anderson and Milton [196L]). The lower two

bursts have been normalized to the top burst.

Figure 5 Distribution of rise times for 100 large asymmetric

microbursts.

Figure 6 Composite time profile of 75 individually analyzed

asymmetric microbursts.

Figure 7 Time profile of a typical large asymmetric microburst

revealing the characteristic time constants.
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The appearance in three energy channels of the sym-
metric microburst species observed late in the morning,

August 11, 1965. Vertical scales are analog.

Largest observed asymmetric microburst for three energy
windows and the ratios between the various energy channels.

Vertical scale of burst is analog.

Comparison between the distribution of rise times

for asymmetric and symmetric microbursts.

Comparison curves of the energy channels E > 60 keV

and LO keV < E < 60 keV for 25 asymmetric microbursts.

Composite curves of the energy channel E > 60 keV and

4O keV < E < 60 keV for 25 symmetric microbursts.
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ABSTRACT

High-time resolution x-ray equipment flown from Ft.
Churchill, Manitoba, Canada on August 11, 1965 provides evi-
dence for species of auroral zone x-ray microbursts with an
asymmetric time profile. These asymmetric microbursts are
characterized by a rise of the form 1 - e-t/TR where Tt is about

R
t/'TD where 7. is

D
about 200 milliseconds, and a typical peak flux for the larg-

30 milliseconds, and a decay of the form of e

est events of J_(E > 60 keV) ~ 10° photons em™2 seet at
o ‘"X-ray
10 g/cmz. An episode of these asymmetric bursts was observed in
the early morning hours (after 4:30 local time) and an episode
of the more common symmetric microbursts began after 9:30 local
time. The fast rise times, and the lack of dispersion 2 10
milliseconds in the x-ray bursts observed at different energies

implies restrictions on the nature, and propagation of the

parent electron microbursts.



